當前位置:首頁 > 百科知識 > 智能電網(wǎng) > 正文

輸電線路 又名:transmissionline

輸電是用變壓器將發(fā)電機發(fā)出的電能升壓后,再經(jīng)斷路器等控制設備接入輸電線路來實現(xiàn)。按結構形式,輸電線路分為架空輸電線路和電纜線路。架空輸電線路由線路桿塔、導線、絕緣子、線路金具、拉線、桿塔基礎、接地裝置等構成,架設在地面之上。按照輸送電流的性質,輸電分為交流輸電和直流輸電。19世紀80年代首先成功地實現(xiàn)了直流輸電。但由于直流輸電的電壓在當時技術條件下難于繼續(xù)提高,以致輸電能力和效益受到限制。19世紀末,直流輸電逐步為交流輸電所代替。交流輸電的成功,迎來了20世紀電氣化社會的新時代。

 輸電種類

  目前廣泛應用三相交流輸電,頻率為50赫(或60赫)。20世紀60年代以來直流輸電又有新發(fā)展,與交流輸電相配合,組成交直流混合的電力系統(tǒng)。

  按照輸送電流的性質,輸電分為交流輸電和直流輸電。19世紀80年代首先成功地實現(xiàn)了直流輸電。但由于直流輸電的電壓在當時技術條件下難于繼續(xù)提高,以致輸電能力和效益受到限制。19世紀末,直流輸電逐步為交流輸電所代替。交流輸電的成功,迎來了20世紀電氣化社會的新時代。目前廣泛應用三相交流輸電,頻率為50赫(或60赫)。20世紀60年代以來直流輸電又有新發(fā)展,與交流輸電相配合,組成交直流混合的電力系統(tǒng)。

 輸電電壓等級

  輸電的基本過程是創(chuàng)造條件使電磁能量沿著輸電線路的方向傳輸。線路輸電能力受到電磁場及電路的各種規(guī)律的支配。以大地電位作為參考點(零電位),線路導線均需處于由電源所施加的高電壓下,稱為輸電電壓。

  輸電線路在綜合考慮技術、經(jīng)濟等各項因素後所確定的最大輸送功率,稱為該線路的輸送容量。輸送容量大體與輸電電壓的平方成正比。因此,提高輸電電壓是實現(xiàn)大容量或遠距離輸電的主要技術手段,也是輸電技術發(fā)展水平的主要標志。

  從發(fā)展過程看,輸電電壓等級大約以兩倍的關系增長。當發(fā)電量增至4倍左右時,即出現(xiàn)一個新的更高的電壓等級。通常將35~220KV的輸電線路稱為高壓線路(HV),330~750KV的輸電線路稱為超高壓線路(EHV),750KV以上的輸電線路稱為特高壓線路(UHV)。一般地說,輸送電能容量越大,線路采用的電壓等級就越高。采用超高壓輸電,可有效的減少線損,降低線路單位造價,少占耕地,使線路走廊得到充分利用。我國第一條世界上海拔最高的“西北750KV輸變電示范工程”——青海官亭至甘肅蘭州東750KV輸變電工程,于2005年9月26日正式投入運行。“1000KV交流特高壓試驗示范工程”——晉東南—南陽—荊門1000KV輸電線路工程,于2006年8月19日開工建設。該工程起自晉東南1000KV變電站,經(jīng)南陽1000KV開關站,止于荊門1000KV變電站,線路路徑全長約650.677Km。

 輸電線路的保護

  輸電線路的保護有主保護與后備保護之分。

  主保護

  主保護一般有兩種縱差保護和三段式電流保護。而在超高壓系統(tǒng)中現(xiàn)在主要采用高頻保護。

  后備保護

  后備保護主要有距離保護,零序保護,方向保護等。電壓保護和電流保護由于不能滿足可靠性和選擇性現(xiàn)在一般不單獨使用一般是二者配合使用。且各種保護都配有自動重合閘裝置。而保護又有相間和單相之分。如是雙回線路則需要考慮方向。在整定時則需要注意各個保護之間的配合。還要考慮輸電線路電容,互感,有無分支線路。和分支變壓器,系統(tǒng)運行方式,接地方式,重合閘方式等。還有一點重要的是在220KV及以上系統(tǒng)的輸電線路,由于電壓等級高故障主要是單相接地故障,有時可能會出現(xiàn)故障電流小于負荷電流的情況。而且受各種線路參數(shù)的影響較大。在配制保護時尤其要充分考慮各種情況和參數(shù)的影響。

    輸電線路設計應注意的問題

  1.1路徑選擇

  路徑選擇和勘測是整個線路設計中的關鍵,方案的合理性對線路的經(jīng)濟、技術指標和施工、運行條件起著重要作用。為了做到既合理的縮短路徑長度、降低線路投資又保證線路安全可靠、運行方便,一條線路有時需要徒步往返3~5趟才能確定出最佳方案,所以線路勘測工作是對設計人員業(yè)務水平、耐心和責任心的綜合考驗。在工程選線階段,設計人員要根據(jù)每項工程的實際情況,對線路沿線地上、地下、在建、擬建的工程設施進行充分搜資和調研,進行多路徑方案比選,盡可能選擇長度短、轉角少、交叉跨越少,地形條件較好的方案。綜合考慮清賠費用和民事工作,盡可能避開樹木、房屋和經(jīng)濟作物種植區(qū)。在勘測工作中做到兼顧桿位的經(jīng)濟合理性和關鍵桿位設立的可能性(如轉角點、交跨點和必須設立桿塔的特殊地點等),個別特殊地段更要反復測量比較,使桿塔位置盡量避開交通困難地區(qū),為組立桿塔和緊線創(chuàng)造較好的施工條件。

   1.2桿塔選型

  不同的桿塔型式在造價、占地、施工、運輸和運行安全等方面均不相同,桿塔工程的費用約占整個工程的30%~40%,合理選擇桿塔型式是關鍵。對于新建工程若投資允許一般只選用1~2種直線水泥桿,跨越、耐張和轉角盡量選用角鋼塔,材料準備簡單明了、施工作業(yè)方便且提高了線路的安全水平。對于同塔多回且沿規(guī)劃路建設的線路,桿塔一般采用占地少的鋼管塔,但大的轉角塔若采用鋼管塔由于結構上的原因極易造成桿頂撓度變形,基礎施工費用也會比角鋼塔增加一倍,直線塔采用鋼管塔,轉角塔采用角鋼塔的方案比較合理,能夠滿足環(huán)境、投資和安全要求。針對多條老線路運行十幾年后出現(xiàn)對地距離不夠造成隱患的情況,在新建線路設計中適當選用較高的桿塔并縮小水平檔距可提高導線對地距離。在線路加高工程中設計采用占地小、安裝方便的酒杯型(Y型)鋼管塔,施工工期可由傳統(tǒng)桿塔的3~5天縮短為1天,能夠減少施工停電時間。

  1.3基礎設計

  桿塔基礎作為輸電線路結構的重要組成部分,它的造價、工期和勞動消耗量在整個線路工程中占很大比重。其施工工期約占整個工期一半時間,運輸量約占整個工程的60%,費用約占整個工程的20%~35%,基礎選型、設計及施工的優(yōu)劣直接影響著線路工程的建設。濱州市位于山東省北部,屬于黃河沖積平原,土質大部分為粉質粘土,而且地下水位高,一般為±0.0~1.0m,地基承載力又低,一般為70~90kN/m2。通俗講基礎越深受力越好、體積越小,但由于受地下水的影響,基礎深埋后泥水、流砂現(xiàn)象出現(xiàn)的幾率就會加大,給施工帶來極大困難,既影響工期又增加投資。由于地質的特殊性和埋深的局限性,當前的基礎型式只有采取淺埋式,通過適當加大基礎地板尺寸,增加基礎自重來滿足上拔穩(wěn)定才是比較安全經(jīng)濟的。直線塔埋深控制在2m左右,承力塔埋深控制在3~4m左右可減少地下水對施工的影響。根據(jù)工程實際地質情況每基塔的受力情況逐地段逐基進行優(yōu)化設計比較重要,特別對于影響造價較大的承力塔,由四腿等大細化為兩拉兩壓或三拉一壓才是經(jīng)濟合理的。

  2.結束語

  縱觀近年來的輸電建設工程,每項工程都有各自特點,設計中脫離工程實際,一味生搬硬套是無法保證設計質量與滿足電網(wǎng)發(fā)展需要的。只有結合實際,因地制宜,通過優(yōu)化方案,科技攻關,不斷探索與創(chuàng)新,才能滿足建設堅強電網(wǎng)的要求,才能開創(chuàng)工程設計“技術先進、安全合理”的全新局面。


內(nèi)容來自百科網(wǎng)